Effect of V_2O_5 addition on sintering behavior and electrical properties of lead-free ($Li_{0.06}Na_{0.47}K_{0.47}$)NbO₃ ceramics

CHAO WANG^{*}, JING CHEN, LI SHEN, JIAMING RUI, YAN LIU, MANKANG ZHU^a, YUDONG HOU^a Logistics School, Beijing Wuzi University, Beijing 101149, P. R. China

^aKey Laboratory of Advanced Functional Materials of China Education Ministry, Beijing University of Technology, Beijing 100124, P. R. China

(Li_{0.06}Na_{0.47}K_{0.47})NbO₃ (LNKN) ceramics with 0-2 mol% V₂O₅ has been prepared following the conventional solid state sintering method without cold-isostatic pressing (CIP) process. The effects of V₂O₅ addition on the sinterability and electrical properties of the LNKN ceramics were examined. Solid solution limit of V₂O₅ in LNKN is thought to be around 1 mol%. 1 mol% V₂O₅ addition is effective in decreasing the sinter temperature and increasing the density of LNKN to 95.3% of the theoretical density of LNKN ceramic (4.47 g/cm³), while the optimized electrical properties, such as ε_r =493, tan $\overline{\delta}$ =0.014, d_{33} =207 pC/N and k_p =0.43, are obtained.

(Received January 27, 2015; accepted September 29, 2016)

Keywords: Lead-free piezoelectric ceramics, LNKN, Sinterability, Electrical properties

1. Introduction

KNbO₃-NaNbO₃ (KNN) system has attracted researcher's attention since Saito, et al, reported their work on the synthesized KNN-based ceramics with excellent piezoelectric performance comparable to the PZT-based ceramics [1]. KNN is one of the most important lead-free piezoelectric materials with perovskite structure. The hot pressed NKN ceramics (~99% of the theoretical density) was reported to possess a high Curie temperature ($T_{\rm C} \sim$ 420 °C), a large piezoelectric response ($d_{33} \sim 160$ pC/N), and a high electromechanical coupling coefficient ($k_p \sim$ 45%). However, due to the volatibility of potassium element and lack of pyroplastic behavior, the conventionally-sintered NKN ceramics showed relatively lower electrical properties, which prevent its researches and application [2-4]. Recent main focus has been conducted in the conventional solid state sintering method to prepare the dense NKN based ceramics [5-9]. Among these researches, doping into the system and its derivatives has been taken as a common and effective method. Guo, et that $0.98(Na_{0.5}K_{0.5})NbO_3-0.02BaTiO_3$ al. reported ceramics could reach to dense structure by a cold-isostatic pressing followed an ordinary sintering technique because of an increase in grain size^[5]. Matsubara successfully synthesized (K_{0.5}Na_{0.5})NbO₃ (KNN)-based ceramics using K_{5.4}Cu_{1.3}Ta₁₀O₂₉ as sintering aide due to its effect on the improvement of the sinterability of KNN ceramics [6]. Malic, et al, found that Ca and Sr doping could promote densification, decrease the phase transition temperatures of KNN ceramics [7]. Ichiki, *et al*, studied the effect of several doping elements on the electric properties of KNN ceramics [8].

 V_2O_5 is a commonly-used sintering aide in ceramic process due to its low melting point. Many researches indicated that V₂O₅ doping could effectively improve the sintering behavior of ceramics [10-15]. Huang, et al, found that the density of V₂O₅-doped Ba(Mg_{1/3}Ta_{2/3})O₃ ceramics can be increased beyond 95 % of its theoretical value by 1500 °C-sintering [10]. He believed that the densification effect is caused by the liquid-phase effect of V₂O₅ addition. Tzou, et al, studied the sintering behavior of BiNbO₄ and found that with $1wt\% V_2O_5$ added, the densification temperatures of BiNbO4 ceramics decreased from 960 to 920 °C and the density increased from 83.6 to 98% of theoretical density [11]. The similar effects were also observed in other ceramic systems, including ZnTiO₃ [12], Bi_{1.5}Zn_{1.0}Nb_{1.5}O₇ [13], Mg₄Nb₂O₉ [14] and Sr_{0.5}Ba_{0.5}Nb₂O₆ [15] ceramics. However, the research about NKN based ceramics with V₂O₅ doped was scarcely reported.

In this work, the effects of V_2O_5 addition on the behavior and dielectric properties sintering of (Li_{0.06}Na_{0.47}K_{0.47})NbO₃ ceramics, which was reported with excellent piezoelectric performance [16], were investigated. The experiment results showed that the suitable addition of V2O5 could significantly improve the sintering behavior of LNKN ceramics while the electrical properties remains essentially constant. As 1 mol% V₂O₅ added, the optimal sintering temperature of the LNKN ceramics decreased to 1050 °C, and the density improved to 4.259 g/cm³, and optimized electrical properties, such as ε_r =493, tan δ =0.014, d_{33} =207 pC/N and k_p =0.43, were also obtained.

2. Experimentation

In this work, the V₂O₅-doped LNKN ceramics were prepared by the conventional solid state sintering method. Chemical reagents, including Na₂CO₃ (99.9%), K₂CO₃ (99.9%), Li_2CO_3 (99.9%), Nb_2O_5 (99.9%) and V_2O_5 (99.7%), were weighed according to the formula $(Li_{0.06}Na_{0.47}K_{0.47})NbO_3 + x mol.\% V_2O_5$ (x = 0, 0.5, 1, 1.5,and 2) and mixed in a nylon with ZrO₂ balls for 24 h using ethanol as a medium. The mixed oxide powders were calcined at 850 °C for 10 h. Then, the calcined powders were ball milled again with 2 wt.% poly vinyl alcohol (PVA) solution for 24 h. The granulated powders were dried and pressed under uniaxial 200 MPa pressure into pellets of 1.5 cm diameter. The pellets were sintered in a sealed alumina crucible in ambient atmosphere at selected temperatures in the range 1030 °C to 1080 °C, depending on their x, for 2 h. The sintered specimens were then lapped and electroded with a silver paste for dielectric measurements.

To check the densification of ceramics, the apparent density of the fired samples were measured by the Archimedes method using distilled water as a medium. The X-ray diffraction (XRD) analysis was performed in θ -2 θ mode using a Bruker D8 Advance X-ray diffractometer with Cu Ka radiation, to examine the phase structure. The morphology of the ceramics was observed using a Hitachi model S-3500N scanning electron microscopy (SEM). The dielectric measurements were carried out on Agilent 4284A precision LCR meter. Prior to testing piezoelectric properties, the specimens were poled in a silicone oil bath at 150 °C by applying a dc field of 4 kV/ mm for 30 min and aged for 24 h. The piezoelectric coefficient d_{33} was measured using a ZJ-3D quasi-static piezoelectri d_{33} meter. The electromechanical coupling factor and k_p (kp) were estimated by the resonance and anti-resonance technique using a Agilent 4294A impedance analyzer.

3. Results and discussion

Fig. 1 shows the apparent densities of V_2O_5 -doped LNKN ceramics as function of sintering temperature. As seen from the figure, the apparent density of ceramic for a fixed composition varies evidently as the temperature increases. For the undoped ceramics, the apparent density reaches a peak at temperature of 1070 °C, the optimal sintering temperature (OST), at which the maximal apparent density of 4.136 g/cm³ arrives. As the V₂O₅ addition increased, the optimal temperature decreased. For the V₂O₅ addition less than 1.0 mol.%, the OST decreased while the maximal apparent density increased. When the

V₂O₅ increased to 1.0 mol.%, the OST decreased to 1050 °C while the maximal density increased to 4.259 g/cm^3 . It means that suitable V_2O_5 addition could effectively improve the sintering behavior of the LNKN ceramics. The densification was caused by the liquid-phase effect of V_2O_5 addition [10]. The liquid-phase effect could be related to two factors: the first is the low temperature melting of V_2O_5 at 670 °C; the second may be referred to the eutectic phenomena of V_2O_5 and other oxides. These phenomena would be favorable to the occurrence of liquid phase at a lower temperature and the promotion of the mass transfer during the sintering process, thus enhance the sintering behavior of LNKN ceramics. However, excess addition of V_2O_5 is disadvantage to the sintering of LNKN ceramics. As seen from Fig.1, as V₂O₅ increased to 1.5 and 2.0 mol.%, the maximal density at OST decreases gradually. When the V2O5 addition arrives at 2.0 mol.%, the maximal apparent density lowered to 4.219 g/cm³. This may be resulted from the formation of second phase or cavities in the bulk.

Fig. 1. The apparent densities of LNKN + x mol.% V_2O_5 ceramics ($0 \le x \le 2$) as function of sintering temperature

Fig. 2 shows the XRD patterns of LNKN ceramics sintered at optimum sintering temperature. As shown in Fig. 2, the undoped sample presents a single perovskite structure due to all the reflections could be assigned to orthorhombic (Na,K)NbO3 phase as reported by Guo, et al [16]. As V₂O₅ adding into the LNKN ceramics, there appears two effects observed from the figure: one is the shift of the reflections to the larger diffraction angle, the another is the occurrence of the second phase when the addition exceed over 1.0 mol.%. As known, the $V^{\text{5+}}$ ion possesses the smaller radius (0.68 Å) than that of Nb⁵⁺ (0.78 Å) [17]. Therefore, V⁵⁺ ion would prefer to enter into the perovskite lattice, thus cause the shrinkage and distortion of the lattice. Fig. 3 shows the changes of the reflection near 45° as function of V₂O₅ addition. Meanwhile, some new and weak reflections were observed as in Fig. 2. This could be attributed to the precipitation of

 V_2O_5 or its solid solution due to the limited solution of V_2O_5 into the perovskite lattice of LNKN.

Fig. 2. The XRD patterns of LNKN + $x \mod \% V_2O_5$ ceramics sintered at optimum sintering temperature

Fig. 3 shows the SEM photographs of the fracture surface for the LNKN ceramics with different V_2O_5 addition. As seen from Fig. 3a, the undoped sample shows the worsened sintering behavior: some particles still present a status of agglomeration while some grains have developed to a size of about 20 µm. However, the sample addition of 0.5 mol.% with V_2O_5 gives an adequately-developed grains with a size of 10 µm (Fig. 3b), which means the addition of V_2O_5 promote the development of the grains. However, further increase of V₂O₅ addition induces the decrease of grain size and the occurrence of the cavity in the grains as shown in Fig.3c and 3d. It may be related with the precipitation of excess V₂O₅ addition the grain boundary. The EDX analysis for LNKN ceramics with 0.5 and 2.0 mol.% V_2O_5 addition affirmed the suggestion of the V_2O_5 precipitation in the grain boundary as shown in Table 1. Obviously, there is no distinct difference of V₂O₅ content for sample with 0.5 mol.% V₂O₅ addition in grain bulk and boundary. But for the sample with 2.0 mol.%, the difference of the V_2O_5 content in different position is so significant that can not be explained by the measuring error. In a word, small addition of V₂O₅ will dissolve into the perovskite lattice and improve the sintering behavior of LNKN ceramics, which will affect the dielectric properties of LNKN ceramics.

Fig. 3. SEM photographs of the fracture surface for LNKN ceramics undoped(a) and doped with V₂O₅: 0.5 mol.% (b), 1.0 mol.% (c) and 2.0 mol.% (d)

Table 1. EDX analysis of element contents in LNKNceramics with 0.5 and 2.0 mol.% V_2O_5 addition measuredat the boundary or bulk position

V ₂ O ₅ addition	0.5 mol.%		2.0 mol.%	
Element	Bulk(A)	Boundary(B)	Bulk(C)	Boundary(D)
0	39.57	41.46	57.40	54.35
Na	11.85	11.41	8.33	7.64
K	14.48	13.86	8.76	8.52
V	0.38	0.53	0.74	7.02
Nb	33.71	32.74	24.77	22.47

Fig. 4 shows the dielectric constant ε_r and dielectric loss tan δ of LNKN ceramics measured at 100 kHz as function of V₂O₅ content. It is observed that the suitable V₂O₅ doped benefits the improvement of dielectric properties. The optimal ε_r of 493 and tan δ of 0.014 were reached at the 1.0 mol.% addition of V₂O₅, which could be attributed to the increase of ceramic density and the development of the grain growth. However, when the V₂O₅ addition increase over 1.0 mol.%, the dielectric constant of the ceramic decreases markedly and the dielectric loss increases significantly, which could be resulted from the precipitation of V₂O₅ in grain boundary and the occurrence of cavity in the grain bulk, which result in the worsening of the dielectric behavior. The similar effect of the V₂O₅ addition was also observed in the piezoelectric performance. Fig. 5 shows the piezoelectric coefficient d_{33} and the electromechanical coupling factor k_p of LNKN ceramics as function of V₂O₅ addition. As

seen from the figure, both d_{33} and k_p show a similar variation with V₂O₅ addition. When d_{33} and k_p are rapidly increased with V₂O₅ addition until 1.0 mol.%. The optimized values for d_{33} of 207 pC/N and k_p of 0.43 were obtained at the 1.0 mol.% addition of V₂O₅, and further V₂O₅ addition above 1.0 mol.% leads to a rapid decrease in the piezoelectric properties, which corresponds well with the changes of ε_r and tan δ .

Fig. 4. The dielectric constant and dielectric loss of LNKN + x mol.% V₂O₅ ceramics measured at 100 kHz

Fig. 5. The piezoelectric d_{33} and the electromechanical coupling factor k_p of LNKN + x mol.% V_2O_5 ceramics

4. Conclusions

Using the conventional solid state sintering method without cold-isostatic pressing (CIP) process, V_2O_5 -doped LNKN ceramics have been synthesized and their sintering behavior and electrical properties have been investigated in this study. The experiment results show that, for the small V_2O_5 addition less than 1.0 mol.%, the grains grow gradually into well-developed morphology, and small addition of V_2O_5 into the system simultaneously lowers the sintering temperature and enhances the bulk density of the ceramics due to the effect of liquid phase sintering induced by V_2O_5 . As the V_2O_5 addition arrives at 1.0

mol.%, the optimal sintering temperature lowered to 1050 °C from 1070 °C for the undoped sample while the bulk density increased to 4.259 g/cm³, which is 95.3% of the theoretical density. Combining the effect of the bulk densification and grain development, the optimized electrical properties, such as ε_r =493, tan δ =0.014, d_{33} =207 pC/N and k_p =0.43, are obtained with 1.0 mol.% V₂O₅ addition. However, when the addition exceeds over 1.0 mol.%, the density of LNKN ceramics decrease and excess of V₂O₅ precipitated in the grain boundary, thus the electrical properties deteriorate markedly.

Acknowledgement

This work was funded by the Project of New Star of Science and Technology of Beijing (Grant no. 2013028).

References

- Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432(7013), 84 (2004).
- [2] L. Egerton, D. M. Dillon, J. Am. Ceram. Soc. 42(9), 438 (1959).
- [3] R. E. Jaeger, L. Egerton, Hot Pressing of Potassium-Sodium Niobates, J. Am. Ceram. Soc. 45(5), 209 (1962).
- [4] M. D. Maeder, D. Damjanovic, N. Setter, J. Electroceram **13**(1-3), 385 (2004).
- [5] Y. P. Guo, K. Kakimoto, H. Ohsato, Jpn. J. Appl. Phys. Part 1 43(9B), 6662 (2004).
- [6] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Jpn. J. Appl. Phys. Part 1 44(1A), 258 (2005).
- [7] B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, J. Euro. Ceram. Soc. 25(12), 2707 (2005).
- [8] M. Ichiki, L. Zhang, M. Tanaka, R. Maeda, J. Euro. Ceram. Soc. 24(6), 1693 (2004).
- [9] Y. P. Guo, K. Kakimoto, H. Ohsato, Solid State Commun. 129(5), 279 (2004).
- [10] C. L. Huang, K. H. Chiang, S. C. Chuang, Mate. Res. Bull. 39(4-5), 629 (2004).
- [11] W. C. Tzou, C. F. Yang, Y. C. Chen, P. S. Cheng, J. Euro. Ceram. Soc. 20(7), 991 (2000).
- [12] X. C. Liu, L. L. Zhao, F. Gao, X. B. Yan, C. S. Tian, J. Inorg. Mater. 21(4), 885 (2006).
- [13] R. Y. Wang, J. L. Huang, H. F. Zhou, B. Yin, D. M. Sun, Bull. Chinese Ceram. Soc. 24(6), 116 (2005).
- [14] A. Kan, H. Ogawa, A. Yokoi, H. Ohsato, Jpn. J. Appl. Phys. Part 1 42(9B), 6154 (2003).
- [15] G. H. Chen, H. R. Xu, M. H. Jiang, J Mater Sci-Mater in Electron. 21(2), 168 (2010).
- [16] Y. P. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85(18), 4121 (2004).
- [17] R. D. Shannon, C. T. Prewitt, Acta. Cryst. B25, 925 (1969).

^{*}Corresponding author: wancha1981@163.com